
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1293
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Design and Development of New Architecture for
Reconfiguration and Processing of Automation

Industrial Control System
Suvidh P. Gohane, Ganesh S. Khekare

Abstract— In most Automation Industrial Process System, the processes such as manufacturing, processing, packaging etc. are
performed with automation conveyor mechanism system with some particular processing pattern, If in real time there is need to use this
same system to execute another process with some different modified processing pattern. There is a need of reconfiguration of the system
to execute modified processing pattern. Traditionally to achieve this, new system has to be developed with new configuration, this will
require programming expertise to meet modified processing pattern and are costly. So above problem taken into consideration, the design
of a real time reconfigurable industrial system has been developed. The term ‘reconfigurable’ here indicates that the system consisting of
various industrial machines and nodes can be configured to change its mode and sequence of operation, thus changing the work process.
Such systems may be used in industries where a series of manufacturing operations and processes are implemented to obtain a finished
product. Reconfiguration may be needed here to change the design or manufacturing process, to obtain or fulfill the requirements of
another final product. To demonstrate the concept, a system resembling an industrial assembly line have been created, consisting of a
conveyor belt mechanism and sensors with various other mechanisms operating alongside the conveyor over goods and objects being
carried by the conveyor. To enable reconfiguration, new Motion Description Language Architecture (MDLA) schemes that allow the user to
describe the set of processes and tasks in the form of a script that the machine understands have been proposed and designed, also
developed Application Programming Interface (API) Graphical User Interface (GUI) based software where the user can write the scripts,
which are then translated into MDL codes and sent to the machine which starts functioning accordingly.

Index Terms— Application programming interface (API), Automation, Industrial embedded System, Microcontroller, Motion Description
Language Architecture (MDLA), Reconfigure, Sensors.

—————————— ——————————

1 INTRODUCTION
n most of the automation industrial control system, such
as a refinery, thermal power plant, automation plant pa-
per production plant. There are present hundreds or

thousands of sensors and actuators along with embedded con-
trol system which automatic monitor and control functionali-
ties of more advanced and complicated hardware. Due to
some environmental changes or any other technical changes,
malfunction in devices or in sensors may occur. Traditionally,
these devices must need to design again or replaced. This in
turn causes, increase in the cost and very time consuming. So
the systems must provide easy and convenient system recon-
figuration with specially designed software for its hardware.

Usually Software for embedded control systems is designed
and implemented with a set of functions, such as device driv-
ers, control functions and algorithms. Sometimes Components
threshold/reference value may need to be added, adjusted,
removed, or modify in real time in such manner to meet new
product requirements in industry. This emerging trend calls
for reconfigurable embedded system, in which software that
reuses or modifies existing hardware components to generate
the reconfiguration software for each new application very
quickly. This will result in turn to allow a way out for low-cost
product development and Maintenance.

So proposed developed work aims to design a new Motion
Description Language Architecture (MDLA) schemes for re-
configuration of WSN nodes, in most easy and without having
prior knowledge of programming, in which Application pro-
gramming interface (API) will have to designed wherein each

nodes contains various code to be assigned to node parameter
and reconfiguration can be achieved using simple reconfigur-
ing commands.

This paper is organized as follows. Section II discusses the
related work described concerning about methods/ tech-
niques to configure and program wireless network embedded
devices and to connect those to external applications to inter-
net. In Section III, the proposed system architecture is de-
scribed. It explains the architecture of wireless node compo-
nents present and what are the parameters to achieve remote
easy reconfiguration flexibility of any industrial wireless em-
bedded systems. Section IV describes methodology for recon-
figuration of automation conveyor process system. In Section
V design and implementation of the system, hardware imple-
mentation and software implementation have been explained.
What are the outcomes explained in Section VI. Finally, con-
cludes the paper in Section VII.

2 RELATED WORK
 The approach proposed in this paper provides reconfigura-

tion capabilities for embedded devices such as WSN nodes.
Using it, distributed sensor and actuator nodes can be man-
aged without any custom programming, with only simple
configuration commands. Related work includes strate-
gies/techniques to configure and program sensor network
devices and to connect those to external applications via inter-
net.

I IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1294
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

In the literature, there present several works that address
reconfiguration. In paper [1], Author aims at designing a well-
defined MidSN, standard components and formats exist that
are followed by any node and in order to deploy a system ar-
chitecture for deploying and configuring the servers and em-
bedded devices with operations at the beginning of deploy-
ment, providing configuration flexibility prior to operation
through remote configuration. The proposed MidSN architec-
ture builds an intermediate computing layer which will serve
as an abstraction hiding the different hardware implementa-
tions from embedded devices networked applications.

In [13], [14], HW reconfiguration is design by ad hoc recon-
figurable devices. a new approach based on the tight coupling
of processor with a dynamically reconfigurable function unit
which is optimized for wireless sensor network Devices. Dy-
namic reconfiguration is part of the regular operation mode
and the key concept to achieve a small approach that provides
sufficient performance, high adaptivity and good energy-
efficiency. But it is prepared to be adapted for only prerecord-
ed applications.

Paper [2] designs and realizes a reconfigurable smart sensor
interface for industrial WSN in IoT environment. This design
presents many advantages, First CPLD is used as the core con-
troller to release the restriction on the universal data acquisi-
tion interface, and realize truly parallel acquisition of sensor
data. It has improved the sensor data collection efficiency of
industrial WSN, Secondly, a new design method is proposed
multisensor data acquisition interface that can realize plug
and play for various kinds of sensors in IoT environment. The
design system applies the IEEE1451 interface protocol stand-
ard that is used for smart sensors of automatically discovering
network.

Paper [3] provides a detailed description of the implementa-
tion two new rateless-based OAP protocols. Shed light on the
various trade-offs that arise in implementation of rateless OAP
on a sensor networks, such as the tradeoff between the size of
program pages and the size of the underlying finite field used
for computation. It provide extensive numerical results evalu-
ating the performance of protocols, based both on real net-
work experiments with Tmote Sky sensors and also on simula-
tions.

Approaches related with Macro-programming and mid-
dleware are proposed in [4] and [5]. These approaches use a
middleware to reprogram the network. Most consist of mobile
agents which run over virtual machines. Typically, the agent
code is developed by specific frameworks. Specific communi-
cation protocols are also designed to upload the code.
Work described in [6] is the first mobile agent middleware
works for reconfiguration of a WSN implemented entirely in
TinyOS. This paper present an in-depth case study of Agilla
using a fire tracking application. In this application, mobile
agents are deployed to dynamically form and maintain a pe-
rimeter around a fire as it spreads through a network com-
prised of 26 MICA2 motes. This paper makes three primary
contributions. First, it demonstrates how a mobile agent mid-
dleware can be used to facilitate the development and de-
ployment of a nontrivial application. Agilla able to rapidly

create and deploy the entire fire tracking application by inject-
ing 47-byte fire agents and a 100 byte tracker agent. Second a
set of application-level performance results that demonstrate
the reliability and efficiency of mobile agents and tuple spaces
in a highly dynamic application. Finally, it provide new in-
sights into, and lessons about, mobile agent programming
techniques for WSNs.

 The works described in above papers have some issues to
handle the distributed configuration. There is need for soft-
ware to burn completely static and node-specific code into
each device for reconfiguration. Most of the reconfiguration
architecture are mostly targeted at hardware changes and fails
to offer the application configuration flexibility and are costly.
Also they are only for Specific operating system. There is no
such a software architecture which offers computation solu-
tions to provide flexibility to adapt to industrial process
changes efficiently. Each time user needs to develop the new
code, for node reconfiguration which requires programming
expertise.

3 PROPOSED SYSTEM ARCHITECTURE
Proposed system set up shown in figure 3.It consists of control
base station at server side and Industrial set up consists of
wireless network of three nodes i.e. Sensor Alarm Monitor
Unit, Actuator unit and Reconfigurable Exhaust System.

3.1 Node 1 Sensor Alarm monitor unit

Fig. 1. System architecture

Fig. 2. Deployment of Sensors

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1295
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

In Industry such as thermal power plant, mining, oil re-
finery different sensors are used to sense the data and raise the
alarm according to set threshold value. Sensor Alarm monitor
unit shown in figure 4, is a collection of Controller Circuit,
LCD, Battery, Zigbee wireless module for Communication
Medium through cluster node, where all the sensors are con-
nected to controller circuit. It is built of using AVR16 Micro-
controller. The Parameters which reconfigure at Sensor Alarm
monitor unit will be:-

1. Its Threshold value
2. Reboot the system at real time

3.2 Node 2 Actuator unit

In most of the Industrial control system such as Automa-

tion Actuator unit, AVR16 Microcontroller based DC motor
controlled conveyor belt mechanism shown in figure 5, is used
for manufacturing purposes. The parameters which will be
reconfigured at actuator unit i.e. DC motor controlled convey-
or belt mechanism will be:-

1. Speed for particular distance
2. No. of halts
3. Time duration of halts
4. Delay
5. Direction

At run time to make it reconfigurable.

3.3 Node 3 Reconfigurable exhaust pipeline system set

up

Figure 6 is reconfigurable exhaust pipeline system set up in

this node, a network of exhaust pipes and ducts will be devel-
oped that will connect all chambers and rooms within the in-
dustry. Using multiple exhaust fans fit across every intersec-
tion, with directional control at server side API based recon-
figuring software, will be able to reconfigure the route of the
exhaust and suction system. In this way, the user would be
able to choose the exact path from the point of suction to the
point of throw-out.

3.4 Reconfiguration of Industrial control system

Proposed work shown in figure 7 will develop, the API
based reconfiguration software at sever side and loaded in
sever PC. This Reconfiguration software will be developed on
Dotnet programming language. API will be created using Vis-
ual basic Studio (VB6). This will consist to use controls like –
Button, List view and Labels Major controls were – Serial Port
and Button. The advantage of using this language, it is event
driven programming language and provides interface for ap-
plication programming development. Control base station is
nothing but a board having TX/RX Capabilities. AVR16 Mi-
crocontroller is connected to circuit using CP2101(USART)
Buzzer and various input pins will also be provided in the
Base station for communication and testing. Along with one
LCD 2x16 will be interfaced. It continuously monitors the in-
dustrial wireless nodes functions. Zigbee wireless protocol
used as COMM module for communication medium. Master
base station acts as a middleware between server and indus-
trial set up for configuration decoding and updation. Recon-
figuration is done by simple API based reconfiguring com-
mands for example R_config temp();

4 METHODOLOGY FOR RECONFIGURATION OF
AUTOMATION CONVEYOR PROCESS SYSTEM

The following Reconfiguring of Automation Conveyor Process
System model to be constructed aims to provide user friendly
access.

 To Develop the API Reconfiguring software on Server
side.

 To create the Base station which acts as a middleware
between server and nodes.

Fig. 3. Actuator node

Fig. 4. Reconfigurable exhaust pipeline system set up

Fig. 5. Reconfiguration of Industrial control system

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1296
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 To create the embedded process nodes.
 To design these nodes as Reconfigurable.
 To provide the wireless communication between

server and Reconfigurable nodes.
 To develop the configuration command and data

commands.
 To test the entire system.
 To analyze the results.

The Algorithm and flow is shown below which shows how
the whole system works for configuring node.

ALGORITHM FOR ALARM UNIT

STEP 1: START
STEP 2: RECEIVE SENSED VALUE
STEP 3: IF RECEIVE SENSED VALUE > THRESHOLD LIMIT,
 YES GIVE ALARM OTHERWISE GOTO CONTROL
STATE
STEP 3: CHECK CONFIG COMMAND
 IF YES SET NEW THRESHOLD t VALUE OTHER-
WISE REPEAT
STEP 4: END

The control state diagram is explained in figure 7. It shows
how the control flows from one state to another via feedback
loop.

Master state machine generates the reconfiguring command
transfers to channel trigger state and data transmit state.
Channel state triggers the pulses according to the command

received by channel state. These pulses are in feedback loops
with control state to data transmit state. Control state controls
the pulses according to MDL codes send by users.

Algorithm For Reconfiguration of Run Time Process

1. Start
2. Check Continuously to receive command by user

If commands received go to step 3 otherwise repeat
Step 2

3. Decode the command in MDL codes & transfer it to
character variable

4. Checking the entered MDL code command to per-
form reconfiguration process
i. if((mybyte[q]>=65)&&(mybyte[q]<76))

movefw(mybyte[q]-65); Move conveyor belt
in forward direction for specified time, if not
matched go to ii

ii. else if((mybyte[q]>=110)&&(mybyte[q]<120))
movebw(mybyte[q]-110); Move conveyor
belt backward direction for specified time, if
not matched go to iii

iii. else if((mybyte[q]>=48)&&(mybyte[q]<60));
perform process 1, if not matched go to iv

iv. else if((mybyte[q]>=77)&&(mybyte[q]<87));
perform process 2, if not matched go to v

v. else if((mybyte[q]>=88)&&(mybyte[q]<98));
perform process 3, if not matched exit

5. Stop.

5 DESIGN AND IMPLEMENTATION

In this section design of hardware implementation and

software implementation have been explained with specifica-
tion and snapshots are shown.

5.1 Hardware Implementation
The model is divided into two parts i.e. hardware part and

software part Firstly, Hardware part is also divided into two
industrial test bed, sensor alarm monitoring system unit and
Conveyor Process System unit.

5.1.1 Implementation of Sensor Alarm Monitoring
Unit
In sensor alarm monitoring system unit a circuit diagram

is designed which consist of Microcontroller (ATMEGA 16),
Temperature sensor (LM35), Gas sensor (MQ-6) and Serial
Communication (RS232).Two sensors are interfaced using Re-
lay to microcontroller ATMEGA16. Port D is used in which
pin no. 2 & 3 is used for connecting serial communication i.e.
RS232 for transmission and reception of data. LCD is inter-
faced with port A of Atmega 16 on which real time corre-
sponding reading is shown, Alarming buzzer is connected to
port B.

Fig. 6. Flow Diagram of MDL Architecture

Fig. 7. Control state Diagram

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1297
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Sensor Node consist of two Sensors interfaced:
1. Temperature
2. Gas Sensor

 Temperature Gives Reading from 100-800
 Gas Sensor Gives Digital Output

5.1.2 Implementation of Actuator Unit

 Node consist of Conveyor Belt Mechanism driven us-
ing 60 rpm motor

 In order to configure conveyor belt speed, direction,
delay, PWM has been generated on PORT D of At-
mega 16 through driver IC L293D.

 RF has been interfaced at (Tx/Rx) Pin of Controller
working with 2.4 Ghz

5.1.3 Implementation of exhaust pipeline
system set up

 Gas pipeline re-routing has been shown using three
solenoid Valves connected in Y arrangement.

 In and Out of Solenoid Valve has been controlled us-
ing ON/OFF, corresponding with Relay and Com-
mands received from Base Station.

6.1 Software Implementation

 6.1.1 Creation of API based GUI

 API has been created using Visual Basic Studio (VB6)
 API consist use of controls like – Button, List View

and Labels
 Major controls were – Serial Port and Buttons

6 EXPERIMENTAL RESULTS AND DISCUSSIONS
This section shows the experimental test bed for reconfigu-

ration of Industrial assembly line System and discusses how
the proposed developed system reconfigure the process pat-
tern on real time and how effectively it achieves the reconfigu-
ration of system through MDLA architecture.

Here, the paper production industrial test beds having six

automation processes are defined to process with any real
time pattern. Process one is a cutting process used in paper

Fig. 10. Snapshot of exhaust pipeline system set up

Fig. 8. Snapshot of Sensor alarm Monitoring Unit

Fig. 9. Snapshot of Actuator Unit

Fig. 11. Snapshot of API based GUI

Fig. 12. Snapshot of Achieving Reconfiguration of Industrial
Proessing System

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1298
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

production industries, process second is drying process, pro-
cess third is light heating treatment process and conveyor belt
movement forward, backward and delay process. Figure 12
shows how reconfiguring software which is loaded in PC
achieves the reconfiguration of system model.

The GUI for reconfiguration of industrial test bed has

shown in figure 13. Here anyone can easily reconfigure the
processing system with this GUI without having much more
knowledge of programming. Table 1 shows generation of
MDL code commands run time reconfiguration of process
pattern. For example if there is need to perform action of delay
in between already running process pattern, simply open the
reconfiguring software GUI, click on the halt caption button
also can able to select how much delay want produce, select-
ing scroll bar of units. In this way following codes transfers to
the processing model system to perform reconfiguration de-
pending upon the command transfer.

TABLE 1
GENERATION OF MDL CODES

Actions No. Of

Base Units
Code

1 2 3 4 5

Forward A B C D E F
Backward M N O P Q R
3.5 Second
Delay

$! @ % ^ &

Process 1 1 2 3 4 5 6
Process 2 m n o p q r
Process 3 a b c d e f
Loop ?
End of
Command

Upon implementation, this proposed system will enable

factory engineers, supervisors and even users, who do not
have that much knowledge of programming to be remotely
monitor / reconfigure the operation of various machines, and

verify its accurate implementation, wirelessly via a remote
server.

The Graphical analyses are shown with the help of Figure

13. The system has then check the performance with the exist-
ing Manual Hardware Reprogramming Architecture system,
considering the parameters of command passed and time tak-
en to respond for corresponding process. Both the above pa-
rameters are tested in the proposed system and it is found that
event is triggered at same time and proposed systems, re-
sponse time is very low i.e. in seconds as compared to Manual
Hardware Reprogramming Architecture system.

7 CONCLUSION AND FUTURE WORK
Experimental set up achieves the effective reconfiguration

through proposed MDLA architecture schemes. The main aim
behind the proposed developed system approach is to provide
such architecture which uses Application programming inter-
face (API) for easy and uniform configuration and processing
over wireless networks comprising embedded devices and
nodes such as sensor actuator units or control stations. Pro-
posed system has described the detail explanations about each
wireless industrial node components. In wireless sensor net-
works, a combination of high energy-efficiency, flexibility,
interoperability, low cost and user friendly interface is re-
quired, which is difficult to achieve with classical architec-
tures. So uniform API based MDLA reconfiguration software
architecture is developed, has the potential to offer a much
better interface than to adapt for hardware changes solutions,
which are found in most of related work.

The work presented here encourages researchers and de-
signers to develop such protocols and algorithms that are
based on fast and efficient computation to make future sensor
nodes smarter and more efficient. The approach for a flexible,
low cost and efficient sensor node presented in this paper is
based on the combination of a controller with uniform recon-
figurable functional unit, for industrial applications, can also
have to consider web support applications could be imple-

Fig. 13. Snapshot of GUI for Achieving Reconfiguration of
Industrial Processing System

System Performance

Fig. 13 Graphical Analysis

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1299
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

mented using Internet of things (IoT) concepts for reconfigura-
tion functional unit operations. For future research it might be
very useful to analyze the development of tools for heteroge-
neous mixed wireless sensor network and wired network that
could automize and prioritizes these tasks.

REFERENCES
[1] José Cecilio and Pedro Furtado, “Architecture for Uniform (Re)Configuration

and Processing Over Embedded Sensor and Actuator Networks,” IEEE
transactions on industrial informatics, vol. 10, no. 1, february 2014

[2] Qingping Chi, Hairong Yan, Chuan Zhang, Zhibo Pang, and Li Da Xu, Senior
Member, IEEE “A Reconfigurable Smart Sensor Interface for Industrial WSN
in IoT Environment,” IEEE transactions on industrial informatics, vol. 10, no.
2, may 2014

[3] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless deluge: Over-
the-air programming of wireless sensor networks using random linear
codes,” in Proc. IEEE Int. Conf. Inf. Process. Sensor Networks, Apr. 2008, pp.
477–466.

[4] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, L. Soibelman, J.
Garrett, and J. Moura, “Sensor Andrew: Large-scale campus-wide sensing
and actuation,” IBM J. Res. Develop., vol. 1, pp. 1–6, 2010.

[5] A. Tavakoli, A. Kansal, and S.Nath, “On-line sensing task optimization for
shared sensors,” in Proc. 9th ACM/IEEE Int. Conf. Inf. Process. In Sensor
Networks, Stockholm, Sweden, 2010, pp. 47 57.

[6] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware for
self-adaptive wireless sensor networks,” ACM Trans. Auton. Adaptive Syst.,
vol. 4, no. 3, pp. 1–26, 2009, Art. 16.

[7] H. Hinkelmann, P. Zipf, and M. Glesner, “Design concepts for a dynamically
reconfigurable wireless sensor node,” in Proc. 1st NASA/ESA Conf. Adap-
tive Hardware Syst., Jun. 2006, pp. 436–441.

[8] K. Aberer, M. Hauswirth, and A. Salehi, “The global sensor networks mid-
dleware for efficient and flexible deployment and interconnection of sensor
networks,” EPFL, Tech. Rep. LSIR REPORT-2006-006, 2006.

[9] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: An architecture
for a world-wide sensorweb,” IEEE Pervasive Computing, vol. 2, no. 4, pp.
22–33, Oct. 2003

[10] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Programming wireless
sensor networks with the TeenyLime middleware,” in Proc.
ACM/IFIP/USENIX Int. Conf. Middleware, 2007, pp. 429–449

[11] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial
control systems—A review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp.
1824–1842, Aug. 2007.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An
acquisitional query processing system for sensor networks,” ACM Trans. Da-
tabase Syst., vol. 30, pp. 122–173, 2005.

[13] S. Brown and C. J. Sreenan, Updating Software in Wireless Sensor Networks:
A Survey Tech. Rep. UCC-CS-2006-13-07, 2006

[14] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor network software
update management: A survey,” Int. J. Network Manag., vol. 15, pp. 283–294,
2005.M. Young, The Technical Writer's Handbook. Mill Valley, CA: Universi-
ty Science, 1989.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	3 Proposed System Architecture
	3.1 Node 1 Sensor Alarm monitor unit
	3.2 Node 2 Actuator unit
	3.3 Node 3 Reconfigurable exhaust pipeline system set up
	3.4 Reconfiguration of Industrial control system

	4 Methodology for Reconfiguration of Automation Conveyor Process System
	5 Design and Implementation
	5.1 Hardware Implementation
	5.1.1 Implementation of Sensor Alarm Monitoring Unit
	5.1.2 Implementation of Actuator Unit
	5.1.3 Implementation of exhaust pipeline system set up
	6.1 Software Implementation
	6.1.1 Creation of API based GUI

	6 Experimental Results and Discussions
	7 Conclusion and Future work
	References

